A model based Iterative Learning Control method applied to an industrial robot

نویسندگان

  • Mikael Norrlöf
  • Svante Gunnarsson
چکیده

A synthesis algorithm for the filters in a first order ILC is presented and applied on an industrial robot. The proposed ILC synthesis method is evaluated using two experiments on the robot. The first is a one-axis experiment where the system can be seen as a single servo. A modeling experiment is done to give input to the synthesis algorithm and then ILC is applied to the single axis showing a dramatic improvement in trajectory following. In the second experiment ILC is applied to a more complex multi axes motion where the robot draws a circle in a plane. The evaluation of the result is done using a pen mounted on the robot and it is evident that also on the arm-side an improved motion can be achieved. In both experiments the error converges to a stable level in about 5 iterations. Since a model is desired for the synthesis, an extra iteration has to be done for the modeling experiment. In this particular case a good path following can therefore be achieved after 6 iterations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifted system iterative learning control applied to an industrial robot

This paper proposes a model-based iterative learning control algorithm for time-varying systems with a high convergence speed. The convergence of components of the tracking error can be controlled individually with the algorithm. The convergence speed of each error component can be maximised unless robustness for noise or unmodelled dynamics is needed. The learning control algorithm is applied ...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...

متن کامل

Sensor fusion for position estimation of an industrial robot, Report no. 2612

A modern industrial robot control system is often based only upon measurements from the motors of the manipulator. Hence to follow a trajectory with the tool an accurate description of the system must be used. In the paper a sensor fusion technique is presented to achieve good estimates of the position of the robot using a simple model. By using information from an accelerometer the effect of u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014